

ОАНО «Школа «ЛЕТОВО»

«ПРИНЯТО» на заседании педагогического совета от <u>26 общена</u> 2019 г.

«УТВЕРЖДАЮ» Директор ОАНО «Школа «ЛЕТОВО» / М.Г. Мокринский / « ** — оъщента 2019 года

Дополнительная общеобразовательная общеразвивающая программа

«Истории о «ненужных» открытиях».

Направленность программы: естественнонаучная

Уровень программы: ознакомительный

Возраст обучающихся: 15-16 лет

Срок реализации программы: 5 месяцев

Составитель:

педагог дополнительного образования

Оболенский И.С.

г. Москва, 2019

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В соответствии с Уставом «Школы Летово» (в дальнейшем Школа), Миссией и Политикой образовательного учреждения при разработке программ дополнительного образования учащихся составитель ориентируется на принципы, изложенные во внеакадемической программе развития учащихся, предполагающей личностно-ориентированное обучение. Программа внеакадемического развития включает 5 направлений:

- Лидерство и взаимодействие (социально-педагогическая направленность)
- Творчество и изобретательство (художественная и техническая направленность)
- Социальная и гражданская ответственность (социально-педагогическая направленность)
- Спорт и здоровье (физкультурно-спортивная направленность)
- Наука и познание (естественнонаучная направленность)

В соответствии с вышеуказанными документами разработана программа дополнительного образования «Истории о ненужных открытиях» в рамках направления «Наука и познание» (естественнонаучная направленность)

Актуальность программы обусловлена требованиями ФГОС и требованиями Международного бакалавриата, а также билингвальной образовательной моделью, принятой в Школе, контингентом учащихся, имеющим высокие образовательные запросы. Школа сочетает в себе наилучшие традиции и опыт российского образования с передовым опытом ведущих школ мира. Это и определяет содержание программы дополнительного образования.

Новаторство программы обусловлено авторским подходом к изложению и изучению материала.

Особенностью курса является рассмотрение основных тем профильной программы через призму открытий. Содержание «ненужных» открытий являет собой провокационный вызов к глубокому изучению вопроса и дальнейшего сопоставления материала, изученного ранее. Полученная таким образом информация не только расширит знания, но и явится фундаментом для создания новых умозаключений.

Каждая, предложенная к изучению тема представлена как отдельная, самостоятельная история с элементами занимательного материала. Все виды деятельности, предложенные в ОГЭ, станут основой представления отдельных тем курса, что стимулирует актуализацию нужных знаний. Описание событий будет дано в виде решения расчетных, логических и экспериментальных задач.

Цели программы:

- систематизация и обобщение знаний при подготовке к ОГЭ;
- демонстрация возможности использования физических открытий в повседневной жизни;
- формирование полной картины развития физических идей;
- развитие критического мышления.

Задачи программы:

- научиться обнаруживать, анализировать и описывать физические закономерности;
- -в ходе постановки эксперимента и его обсуждения изучить принцип действия приборов, устройств, которые «живут» по законам физики;
 - использовать физические тексты, предлагаемые в формате ОГЭ, как один из основных источников информации.

Курс предназначен для учащихся 15-16 лет.

Срок реализации программы –5 месяцев.

Общее количество часов – 36 ч.

Количество часов в неделю – 2 ч.

Форма проведения занятий: групповая.

Форма организации занятий: коллоквиумы (беседа с выявлением уровня знаний), практикумы по решению задач и итогового оценивания.

В результате прохождения курса обучающиеся смогут успешно применять знания по теории к решению конкретных задач ОГЭ проявляя при этом познавательный интерес в области физических знаний.

Основными ресурсами являются сборники задач различного уровня (от сборников ФИПИ для подготовки к ОГЭ до олимпиад), а так же учебные материалы, позволяющие обобщить темы, вынесенные на экзамен.

Ожидаемые результаты.

- приобретение навыка решения типовых расчетных, логических и экспериментальных задач в формате ОГЭ;
- пробуждение интереса к физике как науке;

Знания:

- представление о некоторых методах работы учёного-физика;
- представление о разных типах физических задач и об основных стратегиях, используемых при их решении.

Умения:

- аргументировать свои наблюдения, чётко формулировать выводы по результатам физического эксперимента;
- критически анализировать возможные варианты решения;
- в своих рассуждениях опираться не на аналогию с отдельными примерами, а на выведенные закономерности; отличать случайные явления от системных.

Форма представления результатов: По окончании курса слушатели будут решать пробный вариант ОГЭ 9 класса по физике.

№	Учебный план и Содержание	Часы
1	Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда. Условие плавания тел.	4
2	Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред. Инфразвук и ультразвук.	4
3	Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда. Электрическое поле. Действие электрического поля на электрические заряды. Проводники и диэлектрики.	
4	Постоянный электрический ток. Действия электрического тока. Работа и мощность тока. Закон Джоуля – Ленца.	4
5	Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит. Магнитное поле постоянного магнита. Взаимодействие постоянных магнитов Опыт Ампера. Взаимодействие двух параллельных проводников с током. Действие магнитного поля на проводник с током. Направление и модуль силы Ампера	
6	Электромагнитная индукция. Опыты Фарадея. Переменный электрический ток	4
7	Электромагнитные колебания и волны. Шкала электромагнитных волн	4
8	Закон прямолинейного распространения света. Закон отражения света. Плоское зеркало. Преломление света. Дисперсия света. Линза. Фокусное расстояние линзы. Глаз как оптическая система. Оптические приборы	
9	Радиоактивность. Альфа-, бета-, гамма-излучения. Реакции альфа- и бета-распада. Опыты Резерфорда по рассеянию альфа-частиц. Планетарная модель атома. Состав атомного ядра. Изотопы. Ядерные реакции. Ядерный реактор. Термоядерный синтез	4

Тематическое планирование

Раздел ы	Тема (Содержание, Ключевые вопросы)	Количество часов	Виды деятельности	Виды оценивания
1	 «Капризы пятого океана». 1. Опыт Торричелли. 2. Магдебургские полушария. 3. Барометр – анероид. 4. Жидкостный манометр. 5. Металлический манометр. 6. Поршневой жидкостный насос. 	4	Презентация прибора, устройства. Решение логических и эксперименталь-ных задач с участием данных приборов.	Паспорт прибора, устройства.
2	«Таинственные сосуды». 1. Бочка Паскаля. 2. Ведерко Архимеда. 3. Ареометр. Ливер. 4. Шар Паскаля. 5. Сифон. Чаша Пифагора. 6. Термоскоп Галилея. 7. Водолазный колокол.	4	Исследовательский вопрос и ответ. Дебаты о принципе действия приборов, устройств. Конструирование устройств.	Модели сконструированн ых приборов и устройств. Инструкции к использованию.
3	«Могущественная жидкость» 1. Гидравлический пресс. 2. Шлюзы. 3. Картезианский водолаз.	2	Извлечение информации из физического текста.	Применение информации из текста физического содержания.
4	«О плавающих и тонущих» 1. Парадоксы силы Архимеда. 2. Гидростатика в стакане. 3. Воздушные шары.	4	Решение расчетных и логических задач.	«Ответ- число».

	4. Плавание с аквалангом.			
5	«Спасите наши уши!» 1. Импульс материальной точки 2. Импульс тела 3. Закон сохранения и изменения импульса 4. Реактивное движение 5. уу	2	Понимание и анализ эксперименталь-ных данных, представленных в виде таблиц, графиков или рисунков (схем)	
6	«Заряды и разряды». 1. Электрофорная машина. 2. Генератор Ван де Граафа. 3. Янтарь и шерсть. Стекло и шелк. 4. Колокольчики Франклина. 5. Колесо Франклина. 6. Гальванический элемент. 7. Вольтов столб.	6	Лекция. Решение задач.	Тест — соответствия.
7	 «Любящий камень». 1. Электрические звонки и электромагниты. Как изготовить электромагнит, подъемную силу которого можно регулировать? 2. Электродвигатель. Почему двигатель постоянного тока с одной обмоткой трудно запустить, а когда запускаются, то могут вращаться в любом направлении? Как это предотвратить? 3. Как магнит помог понять физикам, что такое 	4	Семинар. Работа в группах.	Презентация.

радиация? Расскажите об опыте. 4. Как удалось измерить удельный заряд положительных ионов? Как этот опыт подтвердил существование изотопов? 5. Ускорители заряженных частиц. Какие открытия уже сделаны на БАК? 6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушкс. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радноволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 9. «Атом нокорем». Лекция. Решение задач. Разбор задач. МИКС	
положительных ионов? Как этот опыт подтвердил существование изотопов? 5. Ускорители заряженных частиц. Какие открытия уже сделаны на БАК? 6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8 «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
подтвердил существование изотопов? 5. Ускорители заряженных частиц. Какие открытия уже сделаны на БАК? 6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8 «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
5. Ускорители заряженных частиц. Какие открытия уже сделаны на БАК? 6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
открытия уже сделаны на БАК? 6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
6. Магниты у нас дома. Почему «магнетизм» холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8 «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
холодильника проявляется только притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8 «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
притяжением? Объяснить природу ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
ферромагнетизма. 7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
7. Магнитная запись. Как магнетизм помогает «хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? 8. «Методы астрофизических исследований». 1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4. Видимое. 5. Рентгеновское. 6. Гамма излучение.	
«хранить» информацию? 8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? Коллоквиум. Работа в командах. Мини – 1. Радиоволновое излучение. 2. Ультрафиолетовое. 4 3. Инфракрасное. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	
8. Поезда на магнитной подушке. Как приподнять поезд с помощью магнитных сил? Коллоквиум. Работа в командах. 8 «Методы астрофизических исследований». Коллоквиум. Работа в командах. 1. Радиоволновое излучение. 4 2. Ультрафиолетовое. 4 4. Видимое. 4 5. Рентгеновское. 6. Гамма излучение.	
приподнять поезд с помощью магнитных сил? 8 «Методы астрофизических исследований». Коллоквиум. Работа в командах. Мини – 1. Радиоволновое излучение. 4 2. Ультрафиолетовое. 4 3. Инфракрасное. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	
8 «Методы астрофизических исследований». Коллоквиум. Работа в командах. Мини – 1. Радиоволновое излучение. 4 Коллоквиум. Работа в командах. Мини – 2. Ультрафиолетовое. 4 Видимое. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	
1. Радиоволновое излучение. 2. Ультрафиолетовое. 3. Инфракрасное. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	
2. Ультрафиолетовое. 4 3. Инфракрасное. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	роект.
3. Инфракрасное. 4 4. Видимое. 5. Рентгеновское. 6. Гамма излучение. 6. Гамма излучение.	
4. Видимое.5. Рентгеновское.6. Гамма излучение.	
5. Рентгеновское.6. Гамма излучение.	
6. Гамма излучение.	
9 «Атом нокорен» Пекция Решение запан Разбор запан МИКС	
/ WATUM HUNDEHM. 1 CHICATON TOWN TO SAGAR. 1 ASOUP SAGAR. WITHOU	
1. Атомное ядро и радиоактивный распад. уравнен	
2. Пепная реакция и атомная бомба	——
3. Метод радиоуглеродного анализа.	ій реакций.
4. Ядерные реакторы.	
5. Медицинская диагностика и радиация.	
10 «Девять этюдов по физике» 4 Итоговое оценивание. Тест в ф ОГЭ.	

Виды оценивания:

- 1. Решение задач: оценка от 1 до 8 в соответствии с параметрикой по каждой задаче.
- 2. Работа на уроке (комментирование предложенных решений, ответы на вопросы, возникающие по ходу обсуждения задач): оценка от 0 до 2 баллов за каждый урок. По окончании каждого юнита на основе накопленных баллов выставляется оценка за работу на уроках от 1 до 8.

Календарный учебный график ОАНО Школа «ЛЕТОВО» на 2019-2020 уч.г.

Начало учебного года		02.09.2019	
Окончание учеб	ного года для 10 класса	30.05.2020	
І полуголиа	1 четверть	02.09.2019– 26.10.2019	
I полугодие	2 четверть	05.11.2019 – 27.12.2019	
II полугодие	3 четверть	13.01.2020 - 14.03.2020	
31.3	4 четверть	23.03.2020 – 24.05.2020	
Осенние каникулы		27.10.2019 – 04.11.2019 (9 дней)	
Зимние каникулы		28.12.2019 — 12.01.2020 (16 дней)	
Весенние каникулы		15.03.2020 – 22.03.2020 (8 дней)	
Майские каникулы		01.05.2020 — 12.05.2020 (12 дней)	
Продолжительность учебной недели		6 дней	

IV. Итоговое оценивание

Итоговое оценивание представляет собой проверку знаний и умений школьника в формате теста, включающего в себя вопросы ОГЭ по физике прошлых лет

Материально-технические условия: специальное оборудование не требуется.

Оценочные материалы: для оценки достижения ожидаемых результатов педагогом может быть использована самостоятельно разработанная анкета оценки своих способностей, включающая мотивацию личности, самостоятельность в познавательной коммуникации, удовлетворенность результатами деятельности, уровень активности обучающихся.

Список литературы:

- 1. Элементарный учебник физики под редакцией академика Г.С.Ландсберга. Москва.ФИЗМАТЛИТ 2015
- 2. Физика. Л.Эллиот и У.Уилкокс. Наука. Москва. 1967
- 3. Уроки из космоса.
- 4. Физика для углубленного изучения 1. Механика Бутиков Е.И., А.С. Кондратьев
- 5. Г.А.Бендриков, Б.Б.Буховцев, В.В.Керженцев, Г.Я.Мякишев ФИЗИКА. ЗАДАЧИ ДЛЯ ПОСТУПАЮЩИХ В ВУЗЫ
- 6. Н.В. Гулиа. Удивительная физика. Москва «Издательство НЦ ЭНАС» 2005
- 7. М.Е.Перельман. А почему это так? 1, 2 том. Книжный дом «ЛИБРОКОМ» 2011
- 8. Л.Г.Асламазов. Удивительная физика.МЦНМО ДОБРОСВЕТ Москва 2014
- 9. Школьная физика в задачах с решениями: в 2 ч./ под ред. Г. В. Меледина, В. С. Черкасского. / Новосиб. гос. ун.-т. Новосибирск, 2007. Ч.1. 330 с.
- 10.Школьная физика в задачах с решениями: В 2 ч. / Под ред. Г. В. Меледина,В. С. Черкасского / Новосиб. гос. ун-т. Новосибирск, 2007. Ч. 2. 414 с.
 - Интернет источники:
- 11.Kvantik.com/diver.pdf
- 12.https://elementy.ru/