## Общеобразовательная автономная некоммерческая организация «Школа «ЛЕТОВО»

#### Рабочая программа

# по ИНФОРМАТИКЕ И ИКТ (углубленный уровень)

7 – 9 классы

#### Автор-составитель:

Гуровиц Владимир Михайлович, заведующий кафедрой компьютерных технологий и дизайна

Рассмотрена на заседании кафедры компьютерных технологий и дизайна, протокол № 1 от «28» августа 2018 г.

Программа учебного предмета «Математика» основного общего образования (5–9 классы) для ОАНО «ЛЕТОВО» (далее – Программа) составлена в соответствии со следующими нормативными документами:

- Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 03.08.2018 г.)
  «Об образовании в Российской Федерации»;
- Приказ Минобрнауки России от 17.12.2010 № 1897 (ред. 31.12.2015) «Об федерального утверждении государственного образовательного стандарта основного общего образования» (зарегистрирован в Минюсте России 01.02.2011 № 19644) с изменениями, внесенными приказом Минобрнауки России от 31 декабря 2015 г. N 1577 «О внесении изменений в Федеральный образовательный стандарт основного общего образования»;
- Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол № 1/15 от 08.04.2015);
- Письмо Минобрнауки России от 28.10.2015 № 08-1786, от 03.03.2016 № 08-334 «О рабочих программах учебных предметов, разработанных в соответствии с требованиями ФГОС»;
- Приказ Министерства образования и науки Российской Федерации от 31.03.2014 №253 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2014/2015 учебный год» (с посл. изменениями);
- Концепция развития математического образования в Российской Федерации, утвержденной распоряжением Правительства Российской Федерации от 24 декабря 2013 г. N 2506-р.

Информатика — это естественнонаучная дисциплина о закономерности протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации. Вместе с математикой, физикой, химией, биологией курс информатики закладывает основы естественнонаучного мировоззрения.

Информатика имеет очень большое и всё возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий — одного из наиболее значимых технологических достижений современной цивилизации.

Многие предметные знания И способы деятельности (включая базе использование ИКТ), освоенные обучающимися на средств информатики способы деятельности, находят применение как в рамках образовательного процесса при изучении других предметных областей, так и

в реальных жизненных ситуациях, становятся значимыми для формирования качеств личности, т. е. ориентированы на формирование метапредметных и личностных результатов. На протяжении всего периода существования школьной информатики в ней накапливался опыт формирования образовательных результатов, которые в настоящее время принято называть современными образовательными результатами.

Одной из основных черт нашего времени является всевозрастающая изменчивость окружающего мира. В ЭТИХ условиях велика фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе, информационных. Необходимость подготовки личности к быстро наступающим переменам в обществе требует развития разнообразных форм мышления, формирования у учащихся умений организации собственной учебной деятельности, их ориентации на деятельностную жизненную позицию.

В содержании курса информатики и ИКТ для 7–9 классов основной школы акцент сделан на изучении фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализации общеобразовательного потенциала предмета.

Курс информатики основной школы, опирается на опыт постоянного применения ИКТ, уже имеющийся у учащихся, дает теоретическое осмысление, интерпретацию и обобщение этого опыта.

Программа по информатике и ИКТ для 7-9 классов основной школы (далее – Программа) составлена на основе федерального компонента государственного образовательного стандарта основного общего образования по информатике и ИКТ, примерной программы изучения дисциплины, рекомендованной Министерством образования науки Российской И Федерации, в соответствии с действующим в настоящее время базисным учебным планом. В ней учитываются основные идеи и положения государственных образовательных стандартов образования второго поколения, а также накопленный опыт преподавания информатики в школе.

Для реализации Рабочей программы используется учебно-методический комплект (далее УМК), обеспечивающий обучение курсу информатики в соответствии с Федеральным государственным образовательным стандартом среднего (полного) общего образования (далее — ФГОС), который включает в себя учебники:

| №         | Авторы, название учебника               | Класс | Издательство |
|-----------|-----------------------------------------|-------|--------------|
| $\Pi/\Pi$ |                                         |       |              |
| 1         | «Информатика. 7 класс. Базовый и        | 7     | «Бином»      |
|           | углубленный уровни». К.Ю. Поляков, Е.А. |       |              |
|           | Еремин                                  |       |              |
| 2         | «Информатика. 8 класс. Базовый и        | 8     | «Бином»      |
|           | углубленный уровни». К.Ю. Поляков, Е.А. |       |              |
|           | Еремин;                                 |       |              |
| 3         | «Информатика. 9 класс. Базовый и        | 9     | «Бином»      |
|           | углубленный уровни». К.Ю. Поляков, Е.А. |       |              |
|           | Еремин                                  |       |              |

По учебному плану ОАНО «Школа «ЛЕТОВО» на уровне основного общего образования предмет «Информатика и ИКТ» по углубленной программе изучается в объёме 173 часа. В том числе:

- в 7 классе 35 часов (1 час в неделю),
- в 8 классе -70 часов (2 часа в неделю),
- в 9 классе 68 часа (2 часа в неделю).

#### ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

### Информация и информационные процессы Выпускник научится:

- •различать содержание основных понятий предмета: информатика, информация, информационный процесс, информационная система, информационная модель и др.;
- •различать виды информации по способам ее восприятия человеком и по способам ее представления на материальных носителях;
- раскрывать общие закономерности протекания информационных процессов в системах различной природы;
- •приводить примеры информационных процессов процессов, связанные с хранением, преобразованием и передачей данных в живой природе и технике;
- •классифицировать средства ИКТ в соответствии с кругом выполняемых задач;
- •узнает о назначении основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств вводавывода), характеристиках этих устройств;
- •определять качественные и количественные характеристики компонентов компьютера;
- •узнает об истории и тенденциях развития компьютеров; о том как можно улучшить характеристики компьютеров;

•узнает о том, какие задачи решаются с помощью суперкомпьютеров.

#### Выпускник получит возможность:

- осознано подходить к выбору ИКТ–средств для своих учебных и иных целей;
- узнать о физических ограничениях на значения характеристик компьютера.

Математические основы информатики

#### Выпускник научится:

- •описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
  - •кодировать и декодировать тексты по заданной кодовой таблице;
- оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- •определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);
- •определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;
- записывать логические выражения, составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;
- •использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- •описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- •познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;

•использовать основные способы графического представления числовой информации, (графики, диаграммы).

#### Выпускник получит возможность:

- •познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- •узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- •познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;
- •познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;
- •ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов);
- •узнать о наличии кодов, которые исправляют ошибки искажения, возникающие при передаче информации.

•

# Алгоритмы и элементы программирования Выпускник научится:

- •составлять алгоритмы для решения учебных задач различных типов;
- •выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- •определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);
- •определять результат выполнения заданного алгоритма или его фрагмента;
- •использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;
- •выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);

- •составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;
- •использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- •анализировать предложенный алгоритм, например, определять какие результаты возможны при заданном множестве исходных значений;
  - •использовать логические значения, операции и выражения с ними;
- •записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

#### Выпускник получит возможность:

- познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;
- создавать программы для решения задач, возникающих в процессе учебы и вне ее;
- познакомиться с задачами обработки данных и алгоритмами их решения;
- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами (роботы, летательные и космические аппараты, станки, оросительные системы, движущиеся модели и др.);
- познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

# Использование программных систем и сервисов Выпускник научится:

- •классифицировать файлы по типу и иным параметрам;
- •выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
  - •разбираться в иерархической структуре файловой системы;
  - •осуществлять поиск файлов средствами операционной системы;
- •использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение диаграмм (круговой и столбчатой);

- •использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;
- •анализировать доменные имена компьютеров и адреса документов в Интернете;
- •проводить поиск информации в сети Интернет по запросам с использованием логических операций.

#### Выпускник овладеет

(как результат применения программных систем и интернет-сервисов в данном курсе и во всем образовательном процессе):

- •навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- •различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- •приемами безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернетсервисов и т. п.;
  - •основами соблюдения норм информационной этики и права;
- •познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом;
  - •узнает о дискретном представлении аудиовизуальных данных.
- •Выпускник получит возможность (в данном курсе и иной учебной деятельности):
- •узнать о данных от датчиков, например, датчиков роботизированных устройств;
- •практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- •познакомиться с примерами использования математического моделирования в современном мире;
- •познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;
- •познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);

- •узнать о том, что в сфере информатики и ИКТ существуют международные и национальные стандарты;
- •узнать о структуре современных компьютеров и назначении их элементов;
  - •получить представление об истории и тенденциях развития ИКТ;
  - •познакомиться с примерами использования ИКТ в современном мире;
- •получить представления о роботизированных устройствах и их использовании на производстве и в научных исследования

#### Личностные результаты

Усвоение программы позволит обучающемуся:

- научиться критически мыслить;
- сформировать интеллектуальную честность и объективность, способность к преодолению мыслительных стереотипов, вытекающих из обыденного опыта или предшествующей учебной деятельности;
  - научиться длительно, сосредоточенно, творчески работать;
  - научиться находить и исправлять собственные и чужие ошибки;
- научиться быть настойчивым при поиске новых методов решений в нестандартных ситуациях;
  - ясно, последовательно и структурированно излагать свои мысли;
- получать удовольствие от самостоятельного решения задач различного уровня сложности;
- научиться распределять свое время и силы при решении задач с ограниченным лимитом времени;
  - развить навыки командной работы, совместного принятия решений;
- развить математическую любознательность, умение ценить эстетическую красоту и интеллектуальную силу математики;
- ценить универсальный характер математического знания, объединяющий людей различных культур и мировоззрений, понимать вклад различных народов в создание корпуса современного математического знания.

#### Метапредметные результаты.

Усвоение программы позволит обучающемуся:

- научиться логически рассуждать, классифицировать, обобщать, доказывать, опровергать;
  - создавать новые методы при решении нестандартных задач;
- аккуратно работать по многоступенчатым алгоритмам, выбирать рациональные пути решения из числа уже известных;
- исследовать данные или свойства объекта, выявлять и описывать найденные закономерности;
- вычленять и структурировать информацию из текстов различного рода, а также создавать собственные грамотные тексты;

ходе изучения математики обучающиеся приобретут формы учебной работы, проектной деятельности особой как способствующей воспитанию самостоятельности, инициативности, ответственности, эффективности повышению мотивации И деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределённости. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

У обучающихся будут сформированы универсальные учебные действия: регулятивные:

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
  - составлять план решения проблемы (выполнения проекта,

проведения исследования);

- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
  - обосновывать достижимость цели выбранным способом на основе

оценки своих внутренних ресурсов и доступных внешних ресурсов;

- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

#### познавательные:

- 1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
  - выделять явление из общего ряда других явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- 2. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
  - обозначать символом и знаком предмет и/или явление;
  - определять логические связи между предметами и/или явлениями,

обозначать данные логические связи с помощью знаков в схеме;

- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа ее решения;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
  - строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
  - 3. Смысловое чтение. Обучающийся сможет:
- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте фактов или процессов;

#### коммуникативные:

- 1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
  - определять возможные роли в совместной деятельности;
  - играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 2. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 3. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
  - выделять информационный аспект задачи, оперировать данными,

использовать модель решения задачи;

- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
  - использовать информацию с учетом этических и правовых норм.

#### СОДЕРЖАНИЕ КУРСА

При реализации программы учебного предмета «Информатика» у обучающихся формируется информационная и алгоритмическая культура; умение формализации и структурирования информации, они овладевают способами представления данных в соответствии с поставленной задачей – таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных; у обучающихся формируется представление о компьютере как универсальном устройстве обработки информации; представление об основных изучаемых понятиях: информация, алгоритм, модель – и их свойствах; развивается алгоритмическое мышление, необходимое для профессиональной деятельности в современном обществе; формируются представления о том, как понятия и конструкции информатики применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных вырабатываются исследованиях; навык И умение безопасного целесообразного поведения при работе с компьютерными программами и в сети Интернет, умение соблюдать нормы информационной этики и права.

#### Информация и информационные процессы

Информация — одно из основных обобщающих понятий современной науки. Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой, и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы — процессы, связанные с хранением, преобразованием и передачей данных.

Компьютер – универсальное устройство обработки данных. Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

#### Программное обеспечение компьютера.

Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. *Носители информации в живой природе*.

История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров. Параллельные вычисления.

#### Техника безопасности и правила работы на компьютере.

Математические основы информатики Тексты и кодирование

Символ. Алфавит – конечное множество символов. Текст – конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Разнообразие языков и алфавитов. Естественные и формальные языки.

Алфавит текстов на русском языке.

Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.

Двоичные коды с фиксированной длиной кодового слова. Разрядность кода. Длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т.д.

Количество информации, содержащееся в сообщении. *Подход А.Н. Колмогорова к определению количества информации*.

Зависимость количества кодовых комбинаций от разрядности кода. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от двоичного.

Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.

#### Дискретизация

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование цвета. Цветовые модели. Модели RGB и CMYK. *Модели HSB и CMY*. Глубина кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналов записи.

Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.

#### Системы счисления

Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.

Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.

Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно. Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

#### Арифметические действия в системах счисления.

Элементы комбинаторики, теории множеств и математической логики Расчет количества вариантов: формулы перемножения и сложения количества вариантов. Количество текстов данной длины в данном алфавите.

Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (коньюнкция, логическое умножение), «или» (дизьюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций. Таблицы истинности. Построение таблиц истинности для логических выражений.

Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

#### Списки, графы, деревья

Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево*. *Генеалогическое дерево*.

Алгоритмы и элементы программирования. Исполнители и алгоритмы. Управление исполнителями

Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

(исполнителями). Алгоритм как план управления исполнителем Алгоритмический язык (язык программирования) – формальный язык для записи алгоритмов. Программа – запись алгоритма на конкретном алгоритмическом языке. Компьютер – автоматическое устройство, способное управлять составленной программе ПО заранее исполнителями, выполняющими команды. Программное управление исполнителем. Программное управление самодвижущимся роботом.

Словесное описание алгоритмов. Описание алгоритма с помощью блоксхем. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Понятие об этапах разработки программ и приемах отладки программ.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

#### Алгоритмические конструкции

Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы.

Выполнение и невыполнение условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий. Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Запись алгоритмических конструкций в выбранном языке программирования.

Примеры записи команд ветвления и повторения и других конструкций в различных алгоритмических языках.

#### Разработка алгоритмов и программ

Оператор присваивания. Представление о структурах данных.

Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, символьные, строковые, логические. Табличные величины (массивы). Одномерные массивы. Двумерные массивы.

Примеры задач обработки данных:

нахождение минимального и максимального числа из двух, трех, четырех данных чисел;

нахождение всех корней заданного квадратного уравнения;

заполнение числового массива в соответствии с формулой или путем ввода чисел;

нахождение суммы элементов данной конечной числовой последовательности или массива;

нахождение минимального (максимального) элемента массива.

Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов в выбранной среде программирования.

Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежник и др.

Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами; обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя (алгоритм Евклида).

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ. Составление описание программы по образцу.

#### Анализ алгоритмов

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Примеры описания объектов и процессов с помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми с помощью формул.

#### Математическое моделирование

Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты.

Примеры использования математических (компьютерных) моделей при решении научно-технических задач. Представление о цикле моделирования: построение математической модели, ее программная реализация, проверка на

простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

Использование программных систем и сервисов. Файловая система

Принципы построения файловых систем. Каталог (директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Архивирование и разархивирование. Файловый менеджер.

Поиск в файловой системе.

#### Подготовка текстов и демонстрационных материалов

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ).

Текстовый процессор – инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

Включение в текстовый документ списков, таблиц, и графических объектов. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др. История изменений.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотация.

Подготовка компьютерных презентаций. Включение в презентацию аудиовизуальных объектов.

Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение, работа с областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и контрастности. Знакомство с обработкой фотографий. Геометрические и стилевые преобразования.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

Электронные (динамические) таблицы

Формулы с использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

#### Базы данных. Поиск информации

Базы данных. Таблица как представление отношения. Поиск данных в готовой базе. *Связи между таблицами*.

Поиск информации в сети Интернет. Средства и методика поиска информации. Построение запросов; браузеры. Компьютерные энциклопедии и словари. Компьютерные карты и другие справочные системы. *Поисковые машины*.

Работа в информационном пространстве. Информационно-коммуникационные технологии

Компьютерные сети. Интернет. Адресация в сети Интернет. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике (геномные данные, результаты физических экспериментов, Интернет-данные, в частности, данные социальных сетей). Технологии их обработки и хранения.

Виды деятельности в сети Интернет. Интернет-сервисы: почтовая служба; справочные службы (карты, расписания и т. п.), поисковые службы, службы обновления программного обеспечения и др.

Компьютерные вирусы и другие вредоносные программы; защита от них.

Приемы, повышающие безопасность работы в сети Интернет. Проблема подлинности полученной информации. Электронная подпись, сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их

использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. Стандартизация и стандарты в сфере информатики и ИКТ докомпьютерной эры (запись чисел, алфавитов национальных языков и др.) и компьютерной эры (языки программирования,

#### ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

#### 7 класс

| № п/п | Наименование темы                       | Количество<br>часов | Количество<br>к/р |
|-------|-----------------------------------------|---------------------|-------------------|
| 1     | Основы программирования на языке Python | 8                   | 2                 |
| 2     | Графические программы в Python          | 5                   | 2                 |
| 3     | Основы работы с офисными приложениями   | 6                   | 2                 |
| 4     | Состав компьютера                       | 6                   | 2                 |
| 5     | Компьютерные сети                       | 5                   | 2                 |
| 6     | Операционные системы                    | 5                   | 2                 |
|       | Итого                                   | 35                  |                   |

#### 8 класс

| <b>№</b><br>п/п | Наименование темы                       | Количество часов на изучение | Количество<br>к/р |
|-----------------|-----------------------------------------|------------------------------|-------------------|
| 1               | Основы электроники                      | 10                           | 2                 |
| 2               | Основы робототехники                    | 11                           | 2                 |
| 3               | Работа с текстом                        | 8                            | 2                 |
| 4               | Растровая графика                       | 7                            | 1                 |
| 5               | Алгоритмы статистического анализа       | 8                            | 2                 |
| 6               | Перебор и динамическое программирование | 11                           | 2                 |

| 7 | Эффективные структуры данных | 70 | 2 |
|---|------------------------------|----|---|
| 8 | Модульное программирование   | 6  | 2 |
|   | Итого                        | 70 |   |

### 9 класс

| <b>№</b><br>п/п | Наименование темы        | Количество<br>часов | Количество<br>к/р |
|-----------------|--------------------------|---------------------|-------------------|
| 1               | Вычислительная геометрия | 12                  | 2                 |
| 2               | Моделирование            | 12                  | 2                 |
| 3               | Основы языка Java        | 12                  | 2                 |
| 4               | Графы                    | 20                  | 2                 |
| 5               | Комбинаторные алгоритмы  | 12                  | 2                 |
|                 | Итого                    | 68                  |                   |