Общеобразовательная автономная некоммерческая организация «Школа «ЛЕТОВО»

Рабочая программа
по ФИЗИКЕ
(углубленный уровень)
10 – 11 классы

Автор-составитель:

Арабули Г.З., учитель физики

Москва

Рассмотрена на заседании кафедры естественных наук, протокол № 1 от «26» августа 2019 г.

По учебному плану ОАНО «Школа «ЛЕТОВО» предмет «Физика» на уровне среднего общего образования (при изучении предмета на углубленном уровне) изучается в объёме 350 часов (по 5 часов в неделю) и 420 часов (по 6 часов в неделю).

10 класс: 175 часов (по 5 часов в неделю), 210 (по 6 часов в неделю)

11 класс: 175 часов (по 5 часов в неделю), 210 (по 6 часов в неделю)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Предметные результаты:

В результате изучения учебного предмета «Физика» на уровне среднего общего образования:

Выпускник на углубленном уровне научится:

 объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

- характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями:
 пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее
 применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические,
 сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания о сновополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, связывающие физические величины;
- анализировать границы примени мостифизических законов, понимать всеобщий характер фундаментальных законовиограниченность использования частных законов;

- формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

СОДЕРЖАНИЕ

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебноисследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с $\Phi \Gamma O C$ COO образования физика изучается на базовом и углубленном уровнях.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на базовом и углубленном уровнях в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Углублённый уровень изучения предмета предполагает формирование предметных компетентностей базового уровня в качестве основы для углубления. Его отличают: большая теоретическая глубина материала, усложнённость решаемых задач, выполнение исследовательских и проектных работ, более высокий уровень требований к планируемым результатам обучения. Таким образом, обучающиеся на углублённом уровне сначала изучают материалы на базовом уровне, после чего переходят к изучению дополнительных материалов. В классах с базовым уровнем изучения предмета предусмотрены фронтальные лабораторные работы. В классах с углублённым изучением выполнение лабораторных работ предусмотрено в

двух вариантах: фронтальные лабораторные работы и лабораторные практикумы. Темы работ лабораторного практикума учитель выбирает в зависимости от уровня подготовки обучающихся и наличия оборудования в кабинете физики.

Углубленный уровень		
Физика – фундаментальная наука о природе. Научный метод		
познания мира. Взаимосвязь между физикой и другими		
естественными науками. Методы научного исследования физических явлений.		
явлений и процессов природы. Закономерность и случайность.		
Границы применимости физического закона. Физические теории и		
принцип соответствия. Роль и место физики в формировании		
современной научной картины мира, в практической деятельности		
людей. Физика и культура.		
Предмет и задачи классической механики. Кинематические		
характеристики механического движения. Модели тел и движений.		
Равноускоренное прямолинейное движение, свободное падение.		
движение тела, брошенного под углом к горизонту. Движение		
точки по окружности. Поступательное и вращательное движение		
твердого тела.		
Взаимодействие тел. Принцип суперпозиции сил. Инерциальная		
система отсчета. Законы механики Ньютона. Законы Всемирного		
тяготения, Гука, сухого трения. Движение небесных тел и их		
искусственных спутников. Явления, наблюдаемые в		
неинерциальных системах отсчета.		
Импульс силы. Закон изменения и сохранения импульса. Работа		
силы. Закон изменения и сохранения энергии.		
Равновесие материальной точки и твердого тела. Условия		
равновесия твердого тела в инерциальной системе отсчета.		
Момент силы. Момент инерции. Равновесие жидкости и газа.		
Движение жидкостей и газов. Закон сохранения энергии в		
динамике жидкости и газа.		
Механические колебания и волны. Амплитуда, период, частота,		
фаза колебаний. Превращения энергии при колебаниях.		
Вынужденные колебания, резонанс.		

	Поперечные и продольные волны. Энергия волны. Интерференция
	и дифракция волн. Звуковые волны.
Молекулярная физика и	Предмет и задачи молекулярно- кинетической теории (МКТ) и
термодинамика	термодинамики.
1 //	Экспериментальные доказательства МКТ.
	Абсолютная температура как мера средней кинетической энергии
	теплового движения частиц вещества. Модель идеального газа.
	Давление газа. Связь между давлением и средней кинетической
	энергией поступательного теплового движения молекул
	идеального газа.
	Модель идеального газа в термодинамике: уравнение Менделеева-
	Клапейрона, выражение для внутренней энергии. Закон Дальтона.
	Газовыезаконы.
	Агрегатные состояния вещества. Фазовые переходы.
	Преобразование энергии в фазовых переходах. Насыщенные и
	ненасыщенные пары. Влажность воздуха. Модель строения
	жидкостей. Поверхностное натяжение. Модель строения твердых
	тел. Механические свойства твердых тел. Модель газа Ван-дер-
	Ваальса.
	Внутренняя энергия. Работа и теплопередача как способы
	изменения внутренней энергии. Первый закон термодинамики.
	Адиабатный процесс. Второй закон термодинамики. Молярная
	теплоемкость.
	Преобразования энергии в тепловых машинах. КПД тепловой
	машины. Цикл Карно. Экологические проблемы теплоэнергетики.
Электродинамика	Предмет и задачи электродинамики. Электрическое
	взаимодействие. Закон сохранения электрического заряда. Закон
	Кулона. Напряженность и потенциал электростатического поля.
	Принцип суперпозиции электрических полей. Теорема
	Остроградского-Гаусса. Разность потенциалов. Проводники и
	диэлектрики в электростатическом поле. Электрическая емкость.
	Конденсатор. Энергия электрического поля.
	Постоянный электрический ток. Электродвижущая сила (ЭДС).
	Закон Ома для полной электрической цепи. Электрический ток в
	металлах, электролитах, полупроводниках, газах и вакууме.
	Плазма. Электролиз. Полупроводниковые приборы.
	Сверхпроводимость.

	Магнитное поле. Вектор магнитной индукции. Принцип		
	суперпозиции магнитных полей. Магнитное поле проводника с		
	током. Действие магнитного поля на проводник с током и		
	движущуюся заряженную частицу. Сила Ампера и сила Лоренца.		
	Поток вектора магнитной индукции. Явление электромагнитной		
	индукции. Закон электромагнитной индукции. ЭДС индукции в		
	движущихся проводниках. Правило Ленца. Явление		
	самоиндукции. Индуктивность. Энергия электромагнитного поля.		
	Магнитные свойства вещества.		
	Электромагнитные колебания. Колебательный контур. Свободные		
	электромагнитные колебания. Вынужденные электромагнитные		
	колебания. Резонанс. Переменный ток. Конденсатор и катушка в		
	цепи переменного тока. Производство, передача и потребление		
	электрической энергии.		
	Элементарная теория трансформатора.		
	Электромагнитное поле. Вихревое электрическое поле.		
	Электромагнитные волны. Свойства электромагнитных волн.		
	Диапазоны электромагнитных излучений и их практическое		
	применение. Принципы радиосвязи и телевидения. Геометрическая оптика. Прямолинейное распространение света в		
	однородной среде. Законы отражения и преломления света.		
	Полное внутреннее отражение. Оптические приборы.		
	Волновые свойства света. Скорость света. Интерференция света.		
	Когерентность. Дифракция света. Поляризация света. Дисперсия		
	света. Практическое применение электромагнитных излучений.		
Основы специальной	Инвариантность модуля скорости света в вакууме. Принцип		
теории относительности	относительности Эйнштейна. Связь массы и энергии свободной		
	частицы. Энергия покоя		
Квантовая физика.	Предмет и задачи квантовой физики.		
Физика атома и атомного	Тепловое излучение. Распределение энергии в спектре абсолютно		
ядра	черного тела.		
	Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г.Столетова,		
	законы фотоэффекта. Уравнение А. Эйнштейна дляфотоэффекта.		
	Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де		

Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра. Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Элементарные частицы. Фундаментальные взаимодействия.

Ускорители элементарных частиц.

Примерный перечень лабораторных работ

- Л/Р «Изучение движения тела, брошенного под углом к горизонту»
- Л/Р «Изучение движения тела по окружности под действием силы тяжести и упругости»
- Л/Р «Измерение коэффициента трения с помощью наклонной плоскости»
- Л/Р «Баллистический маятник»
- Л/Р «Проверка уравнения состояния газа»
- Л/Р «Экспериментальное подтверждение первого закона термодинамики»
- Л/Р «Определение коэффициента поверхностного натяжения жидкости»
- Л/Р «Измерение удельной теплоты плавления льда»
- Л/Р «Измерение электрического заряда»
- Л/Р «Расчет и измерение емкости плоского конденсатора»
- Л/Р «Расчет и измерение сопротивлений резисторов при их последовательном соединении»
- Л/Р «Расчет и измерение сопротивлений резисторов при их параллельном соединении»
- Л/Р «Измерение ЭДС и внутреннего сопротивления источника электрического тока»
- Л/Р «Измерение электрического сопротивления проводников»
- Л/Р «Наблюдение действий магнитного поля»
- Л/Р «Изучение явления электромагнитной индукции»
- Л/Р «Измерение ускорения свободного падения»

- Л/Р «Измерение показателя преломления»
- Л/Р «Измерение длины световой волны»
- Л/Р «Изучение сплошного и линейчатого спектров»

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Углубленный уровень (по 5 часов в неделю)

№ п/п	Тема	Количество часов	В том числе	
			Контрольные работы	Лабораторные работы
	10 класс			
1	Молекулярная физика. Термодинамика.	78	2	2
2	Электродинамика	92	2	3
3	Итоговое повторение	5	1	-
	ИТОГО	175 часов	5	5
	11 класс			
1	Колебания и волны	48	1	3
2	Оптика	36	1	3
3	Элементы теории относительности	13	1	-
4	Квантовая физика	34	1	-
5	Физика атома и атомного ядра	38	1	-
	Повторение	6	1	-
	ИТОГО	175 часов	6	6

Углубленный уровень (по 6 часов в неделю)

№ п/п	Тема	Количество часов	В том числе	
			Контрольные работы	Лабораторные работы
	10 класс			
1	Молекулярная физика. Термодинамика.	98	2	2
2	Электродинамика	106	2	3
3	Итоговое повторение	6	1	-
	ИТОГО	210 часов	5	5
	11 класс			
1	Колебания и волны	56	1	3
2	Оптика	40	1	3
3	Элементы теории	16	1	-

No _/_	Тема	Количество часов	В том числе	
п/п			Контрольные работы	Лабораторные работы
	относительности			
4	Квантовая физика	40	1	-
5	Физика атома и атомного ядра	48	1	-
	Повторение	10	1	-
	ИТОГО	210 часов	6	6