Общеобразовательная автономная некоммерческая организация «Школа «ЛЕТОВО»

Рабочая программа

по ХИМИИ

8 – 9 классы

Автор-составитель: Алешин Глеб Юрьевич, учитель химии Рассмотрена на заседании кафедры естественных наук, протокол № 1 от «28» августа 2018 г.

Рабочая программа учебного предмета «Химии» основного общего образования (5–9 классы) для ОАНО «Летово» (далее – рабочая программа) составлена в соответствии со следующими нормативными документами:

- Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 3.08.2018 г.) «Об образовании в Российской Федерации»;
- Приказ Минобрнауки России от 17.12.2010 № 1897 (ред. от 31.12.2015) «Об утверждении федерального государственного образовательного стандарта основного общего образования» (зарегистрирован в Минюсте России 01.02.2011 № 19644) с изменениями внесенными приказом Минобрнауки России от 31 декабря 2015 г. N 1577 «О внесении изменений в Федеральный образовательный стандарт основного общего образования»;
- Примерная основная образовательная программа основного общего образования: одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15);
- Приказ Министерства образования и науки Российской Федерации от 31.03.2014 №253 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2014/2015 учебный год» (с посл. изменениями);
- Письмо Минобрнауки России от 28.10.2015 № 08-1786, от 03.03.2016 № 08-334 «О рабочих программах учебных предметов, разработанных в соответствии с требованиями ФГОС»;

Курс построен в соответствии с классической последовательностью изложения материала, которая, в соответствии с современными психологопедагогическими воззрениями в наибольшей мере соответствует логике познания. Сначала школьники осваивают понятие «вещество», потом переходят к понятию «химическая реакция», далее осваивают свойства разных классов веществ и типы реакций между ними. Только когда школьники достаточно освоились с понятием «химическая реакция» они переходят к расчетам по уравнению реакций, а после усвоения понятия «вещество» – к его строению и от строения, через периодический закон – к свойствам. Далее изучаются общие закономерности протекания химических реакций (энергетика, кинетика и равновесие). На основе строения атома, периодического закона и общих закономерностей протекания химических реакций рассматривается химия элементов. После этого вводятся основы органической химии. Завершается курс рядом параграфов, описывающих практические приложения химических знаний (тема «Химия и жизнь»).

Многие понятия (в первую очередь, понятия «периодический закон», «атом» и «валентность») развиваются в соответствии с принципом дидактической спирали. Они вводятся на ранних этапах курса на достаточно примитивном уровне и усложняются по мере получения новых знаний. При этом мы строго следили, чтобы не попасть в ловушку, закрепив у школьников излишне примитивные представления.

При составлении программы курса (в частности, при формировании последовательности развития понятий) учитывались следующие психологические соображения.

Во-первых, в соответствии с современными когнитивными теориями (в частности, теорией познавательной нагрузки) человек может одновременно работать с ограниченным числом понятий, которые должны быть хорошо сформированы.

Во-вторых, в соответствии с теми же когнитивными теориями (в частности, теорией пластов познания) все сложные понятия, на которых базируется что-то новое, должны быть хорошо сформированы, а навыки – отработаны, не должно оставаться понятий и навыков, владение которыми предполагается «по умолчанию».

В-третьих, в соответствии с теорией Л.С. Выготского, любое новое познание возможно только в так называемой зоне ближайшего развития. В частности, бесполезно объяснять строение вещества, если школьники не понимают, что такое вещество. Соответственно, программа составлялась так, чтобы формировать зону ближайшего развития и работать в ней.

Ключевую роль в программе играет химический эксперимент, роль которого далеко выходит за рамки иллюстративной, как это принято в большинстве современных курсов. На базе химического эксперимента вводятся новые понятия, организуются когнитивные конфликты (в ходе имеющихся осознают недостаточность школьники представлений) и проводится контроль уже имеющихся знаний. большинстве случаев химический эксперимент в нашем курсе идет соответствующей непосредственно перед теоретической теоретические объяснения апеллируют к результатам эксперимента. Именно химический эксперимент выступает как организующее начало деятельности школьника по познанию химии в данной программе.

При изучении предмета «Химия» в 8-9 классах используется **учебно- методический комплекс** «Вертикаль».

№ п/п	Авторы, название учебника	Класс	Издательство
1	Еремин В.В., Кузьменко Н.Е., Дроздов А.А.	8	Дрофа
	и др. Химия. 8 класс: учебник.		
2	Еремин В.В., Кузьменко Н.Е., Дроздов А.А.	9	Дрофа
	и др. Химия. 9 класс: учебник.		

По учебному плану ОАНО «Школа «ЛЕТОВО» предмет «Химия» на уровне основного общего образования (при изучении предмета на базовом уровне во всех классах) изучается в объёме 138 часов, по 2 часа в неделю в каждой параллели.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;
 - различать химические и физические явления;
 - называть химические элементы;
 - определять состав веществ по их формулам;
 - определять валентность атома элемента в соединениях;
 - определять тип химических реакций;
 - называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
 - составлять формулы бинарных соединений;
 - составлять уравнения химических реакций;
 - соблюдать правила безопасной работы при проведении опытов;
 - пользоваться лабораторным оборудованием и посудой;
 - вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ:
 кислорода и водорода;
 - получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
 - раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
 - характеризовать физические и химические свойства воды;
 - раскрывать смысл понятия «раствор»;
 - вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
 - называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;

- определять принадлежность веществ к определенному классу соединений;
 - составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
- характеризовать взаимосвязь между классами неорганических соединений;
 - раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь»,«электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
 - определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
 - определять степень окисления атома элемента в соединении;
 - раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
 - определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
 - определять окислитель и восстановитель;
 - составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химической реакции;
 - классифицировать химические реакции по различным признакам;

- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
 - грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам,
 устанавливать причинно-следственные связи между данными
 характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;

создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

Предметными результаами изучения предмета являются следующие умения: осознание роли веществ:

- определять роль различных веществ в природе и технике;
- объяснять роль веществ в их круговороте, рассмотрение химических процессов:
 - приводить примеры химических процессов в природе;
- находить черты, свидетельствующие об общих признаках химических процессов и их различиях.

использование химических знаний в быту:

- объяснять значение веществ в жизни и хозяйстве человека. объяснять мир с точки зрения химии:
 - перечислять отличительные свойства химических веществ;
 - различать основные химические процессы;
 - определять основные классы неорганических веществ;
 - понимать смысл химических терминов.

овладение основами методов познания, характерных для естественных наук:

- характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
- проводить химические опыты и эксперименты и объяснять их результаты.

умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе:

- использовать знания химии при соблюдении правил использования бытовых химических препаратов;
 - различать опасные и безопасные вещества.

Рабочая программа построена на основе концентрического подхода. Это достигается путем вычленения дидактической единицы — химического элемента и дальнейшем усложнении и расширении ее: здесь таковыми выступают формы существования (свободные атомы, простые и сложные вещества). В программе учитывается реализация межпредметных связей с курсом физики (7 класс) и биологии (6-7 классы), где дается знакомство с строением атома, химической организацией клетки и процессами обмена веществ.

Основной формой организации учебного процесса является классноурочная система. В качестве дополнительных форм организации образовательного процесса используется система консультационной поддержки, индивидуальных занятий, самостоятельная работа учащихся с использованием современных информационных технологий.

8 класс

Выпускник научится:

• характеризовать основные методы познания: наблюдение, измерение,

эксперимент;

- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;
 - различать химические и физические явления;
 - называть химические элементы;
 - определять состав веществ по их формулам;
 - определять валентность атома элемента в соединениях;
 - определять тип химических реакций;
 - называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
 - составлять формулы бинарных соединений;
 - составлять уравнения химических реакций;
 - соблюдать правила безопасной работы при проведении опытов;
 - пользоваться лабораторным оборудованием и посудой;
 - вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
 - раскрывать смысл понятия «молярный объем»;
 - характеризовать физические и химические свойства воды;
- приготовлять растворы с определенной массовой долей растворенного вещества;
 - называть соединения изученных классов неорганических веществ;
 - раскрывать смысл понятия «раствор»;
 - вычислять массовую долю растворенного вещества в растворе;
- определять принадлежность веществ к определенному классу соединений;
 - составлять формулы неорганических соединений изученных классов;
- распознавать опытным путем растворов кислот и щелочей по изменению окраски индикатора;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
 - раскрывать смысл Периодического закона Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
 - характеризовать зависимость физических свойств веществ от типа

кристаллической решетки;

- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
 - определять степень окисления атома элемента в соединении;
 - раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
 - составлять полные и сокращенные ионные уравнения реакции обмена;
 - определять возможность протекания реакций ионного обмена;

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

9 класс

Выпускник научится:

- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
 - получать, собирать кислород и водород;
- распознавать опытным путем газообразного вещества: кислород, водород;
 - раскрывать смысл закона Авогадро;
 - раскрывать смысл понятий «тепловой эффект реакции»;

- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- характеризовать взаимосвязь между классами неорганических соединений;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- проводить реакции, подтверждающие качественный состав различных веществ;
 - определять окислитель и восстановитель;
 - составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химической реакции;
 - классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;

проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;

- распознавать опытным путем газообразного вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
 - грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;

• критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;

Личностными результамами изучения предмета «Химия» являются следующие умения:

- Осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- Постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- Оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
- Оценивать экологический риск взаимоотношений человека и природы.
- Формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.
- Сформированность познавательных интересов и мотивов, направленных на изучение живой природы, интеллектуальных умений (доказывать, строить рассуждения, анализировать, сравнивать, делать выводы и др.);
- Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах.
- Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
 - Сформированность основ экологической культуры, соответствующей

современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

- регулятивные:

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;

- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной.

Обучающийся сможет:

- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

– познавательные:

- 1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
- выделять общий признак двух или нескольких предметов, или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
 - выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
 - вербализовать эмоциональное впечатление, оказанное на него

источником;

- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 2. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
 - создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа ее решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
 - строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.

Смысловое чтение. Обучающийся сможет:

- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
 - резюмировать главную идею текста;
- преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный учебный,

научно-популярный, информационный, текст non-fiction);

- критически оценивать содержание и форму текста.
- 3. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
 - определять свое отношение к природной среде;
- анализировать влияние экологических факторов на среду обитания живых организмов;
- проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
- 4. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
 - определять необходимые ключевые поисковые слова и запросы;
- осуществлять взаимодействие с электронными поисковыми системами, словарями;
- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
 - соотносить полученные результаты поиска со своей деятельностью.

- коммуникативные:

- 1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
 - определять возможные роли в совместной деятельности;
 - играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности
- корректно и аргументировано отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквизамен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
 - предлагать альтернативное решение в конфликтной ситуации;

- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать идеи;
 - выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 2. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 3. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;

- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
 - использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

8 класс

Тема 1. Химическая лаборатория

Правила техники безопасности. Основная химическая посуда. Свойства стекла. Приемы нагревания.

Лабораторные опыты: приемы обращения с лабораторным оборудованием

Тема 2. Вещество и реакция. Основные понятия и законы химии

Вещество — предмет химии. Существенные свойства вещества. Описание веществ. Номенклатурные и тривиальные названия. Химические формулы, правила их чтения.

Агрегатные состояния и фазовые переходы: плавление, кристаллизация, кипение, конденсация.

Химическая реакция. Условия протекания химической реакции. Признаки химической реакции. Различие физических и химических процессов.

Растворы. Растворитель. Признаки наличия вещества в растворе, методы их выделения. Изменение свойств при растворении. Растворение — процесс, пограничный между физическим и химическим. Взаимодействие веществ в растворах. Концентрация. Растворимость. Насыщенный, ненасыщенный и пересыщенный раствор. От чего зависит растворимость. Принцип «подобное в подобном».

Смесь. Методы разделения смесей. Массовая доля. Расчеты по массовым долям. Примесь. Влияние примесей на свойства. Квалификация веществ по чистоте. Методы очистки веществ.

Атом – частица, не изменяющаяся при химических превращениях. Ядро, электрон. Модель Резерфорда. Химический элемент. Протон, нейтрон, массовое число. Нуклид, его формула. Изотопы.

Закон постоянства состава. Формула состава. Простое вещество. Доказательство наличия элемента в веществе.

Относительная атомная масса. Расчет массовой доли элемента в соединении.

Периодический закон и периодическая система элементов. Структура таблицы Менделеева – группы, подгруппы, периоды. Короткопериодный и длиннопериодный варианты таблицы.

Металлы и неметаллы. Общие физические свойства металлов: металлический блеск, теплопроводность, электропроводность, ковкость, пластичность. Переходные, щелочные и щелочноземельные металлы в таблице Менделеева.

Понятие валентности. Валентности водорода и кислорода. Формулы состава соединений двух элементов. Графические формулы.

Схема химической реакции. Реагенты, продукты. Обозначение условий протекания реакций. Обозначения газа, осадка, выделения и поглощения тепла.

Уравнения химической реакции. Стехиометрия, стехиометрические коэффициенты. Реакции соединения, разложения, замещения и обмена. Взаимообратность реакций соединения и разложения.

Лабораторные опыты. Разница в теплопроводности жидкости и газа. Кипение, конденсация, плавление, кристаллизация.

Физические и химические процессы.

Растворение хлорида натрия в воде. Взаимодействие нитрата серебра с раствором поваренной соли и дистиллированной водой. Кристаллизация хлорида натрия. Зависимость интенсивности окраски раствора от концентрации вещества. Влияние растворения на скорость реакции.

Взаимодействие веществ в водных растворах

Сравнение растворимости хлорида натрия и иодида калия. Изменение растворимости вещества при нагревании. Растворители, смешивающиеся и не смешивающиеся с водой. Растворение жира в разных растворителях. Экстракция йода. Замена растворителя. Высаливание. Приготовление и разделение смеси железных опилок с поваренной солью. Декантация. Перегонка.

Определение металла по его физическим свойствам Определение металлического блеска. Сравнение металлов и неметаллов по электропроводности, пластичности, ковкости. Реакции, схемы которых приведены в учебнике: оксида магния с соляной кислотой, сульфата меди с цинком, цинка с соляной кислотой, хлорида натрия с нитратом серебра.

Соотнесения уравнений реакций разложения с их наблюдением.

Практические работы. Описание веществ. Приготовление растворов с заданной массовой долей. Водопроводная и дистиллированная вода.

Разделение песка и соли. Выделение меди из ее соединений.

Демонстрации. Знакомство с образцами простых и сложных веществ. Отличие свойств H_2O и H_2O_2 .

Реакции, иллюстрирующие основные признаки характерных реакций и условия их протекания.

Чистая и техническая соляная кислота; свойства спирта, испачканного бензином. Образцы типичных металлов и неметаллов.

Горение магния. Разложение дихромата аммония. Реакции разложения, соединения, замещения, обмена.

Тема 3. Классы веществ и взаимосвязи между ними

Оксиды. Центральный элемент в оксиде. Составление формул состава и графических формул оксидов по известной валентности центрального элемента. Номенклатура оксидов.

Высшая валентность. Валентность II у переходных металлов. Валентность по водороду. Промежуточные валентности.

Горение. Реакции простых веществ с кислородом – предсказание продуктов и составление уравнений.

Кислород, промышленные и лабораторные способы его получения. Различия свойств воздуха и чистого кислорода.

Гидроксиды. Орто- и мета- гидроксиды. Составление формул гидроксидов по известной валентности центрального элемента.

Реакции дегидратации и гидратации, составление их уравнений, условия их протекания. Соответствие оксидов и гидроксидов. Гидрофильность оксидов.

Кислоты и основания. Кислотные и основные гидроксиды. Индикаторы.

Соли, составление их формул. Соответствие солей и кислот. Номенклатура солей. Взаимодействие кислот с металлами. Активность металлов. Сила кислот. Составление уравнений реакций кислот с металлами и предсказание, в каких случаях эти реакции идут.

Водород как простое вещество. Его свойства.

Реакция нейтрализации. Запись ее уравнений. Реакции основных оксидов с кислотами, кислотных и основных оксидов между собой (обобщенная реакция нейтрализации). Запись их уравнений.

Общая схема взаимосвязей между классами соединений («генетическая связь веществ»).

Лабораторные опыты. Описание оксидов.

Горение спирта в спиртовке. Горение железа. Накаливание железной проволоки и определение температуры каления. Накаливание стеклянной трубки. Горение магния. Строение пламени. Задувание горящей свечи. Отведение тепла из пламени. Образование копоти. Изменение цвета пламени при продувании кислорода. Тушение пламени и продукты неполного сгорания. Тление угля.

Горение простых веществ.

Разложение борной кислоты и гидроксида меди.

Получение водорода в аппарате Кирюшкина. Получение пузырей, наполненных водородом. Проверка чистоты водорода. Взрыв гремучего газа. Горение водорода.

Практические работы. Получение кислорода и исследование его свойств. Исследование свойств индикаторов.

Исследование взаимодействия кислот с металлами. Реакции кислот и оснований с оксидами.

Демонстрации. Состав воздуха. Горение серы и железа в чистом

кислороде Гидроксиды.

Реакция оксида фосфора и оксида кальция с водой. Различные соли.

Нагревание раствора при реакции нейтрализации.

Реакции кислотных оксидов с основаниями и основных оксидов с кислотами. Реакции между соединениями разных классов (цепочки превращений).

Тема 4. Количественные соотношения в химии

Моль. Число Авогадро. Молярная масса. Расчет молярной массы.

Связь количеств продуктов и реагентов по уравнению реакции (стехиометрические соотношения).

Расчеты по уравнениям реакций. Задачи на расчет массы одних компонентов реакции по массе других.

Молярный объем. Задачи на связь объема и количества газа.

Расчеты по уравнениям реакций с участием газообразных продуктов и их объемов.

Лабораторные опыты. Реакции, зависящие от соотношения компонентов.

Практические работы. Определение массы вещества по массе продуктов его разложения.

Определение массы вещества по массе газообразных продуктов его разложения.

Демонстрации. Куб объемом 22,4 л, соответствующий 1 моль идеального газа при нормальных условиях.

Тема 5. Электронное строение атома и Периодический закон

Электронные уровни. Максимальное и наиболее устойчивое число электронов на уровне. Порядок заполнения уровней. Заполненный и заполняющийся уровень. Связь числа этих уровней с номером периода в таблице Менделеева. Построение электронной конфигурации атомов по уровням. Валентный уровень. Связь числа электронов на последнем уровне и группы в таблице Менделеева. Возбужденное состояние атома.

Электронные подуровни. Максимальное число электронов на подуровне. Различия электронной конфигурации элементов главных и побочных подгрупп. Связь номера группы и электронной конфигурации для элементов побочных подгрупп. Порядок заполнения подуровней. построение электронной конфигурации по подуровням.

Орбиталь. Правило Хунда. Валентные электроны. Спаренные и неспаренные электроны. Электронные (Льюисовы) формулы элементов главных подгрупп. Определение числа неспаренных электронов по таблице Менделеева.

Образование ковалентной связи. Электронная конфигурация как обоснование валентностей.

Связь расстояния от ядра с потенциальной энергией электрона в атоме. Орбитальные радиусы атомов и их периодическое изменение. Электроотрицательность. Полярность ковалентной связи.

Ион, катион, анион. Формулы ионов. Изменение орбитального радиуса при образовании ионов. Устойчивость ионов. Ионная связь.

9 класс

Тема 6. Химическая связь и строение вещества

Молекула. Строение молекулы. Структурная формула. Вещества молекулярного строения.

Типы кристаллических решеток. Молекулярная, ионная, атомная и металлическая решетки. Характерные физические свойства каждой из них. Определение типа решетки по формуле вещества.

Механизмы растворения веществ на атомном уровне. Связь между частицами растворителя и растворенного вещества в растворе. Условия растворения. Полярные и неполярные растворители. Принцип «подобное в подобном».

Электролитическая диссоциация и ее механизм. Электролиты. Сильные и слабые электролиты. Кислоты и основания с точки зрения теории электролитической диссоциации.

Лабораторные опыты. Растворение йода в различных растворителях. Электропроводность воды, хлорида натрия и его раствора. Электропроводность сахара и его раствора. Электропроводность некоторых кислот.

Практические работы. Распознавание соединений с различной кристаллической решеткой.

Демонстрации. Электропроводность растворов солей. Электропроводность раствора соли в полярном и неполярном растворителе.

Тема 7. Электролитическая диссоциация и ионообменные реакции

Составление уравнений электролитической диссоциации. Кислота, основание и соль по Аррениусу. Ступенчатая диссоциация многоосновных кислот и многокислотных оснований.

Кислые и основные соли. Составление уравнений реакций нейтрализации с кислыми и основными солями.

Образование электролитов из ионов. Краткие ионные уравнения. Предсказание возможности протекания реакций между ионами (правило Бертолле). Таблица растворимости. Составление кратких ионных уравнений. Качественные реакции на ионы.

Полная ионная и молекулярная форма записи уравнений реакции. Переход от одних форм к другим. Составление уравнений ионообменных реакций.

Лабораторные опыты. Ионообменные реакции, иллюстрирующие уравнения в учебниках.

Практические работы. Обнаружение ионов при помощи ионообменных реакций или исследование состава минеральных вод.

Проведение ионообменных реакций или распознавание электролитов в растворе без использования других реагентов.

Демонстрации. Реакции кислых солей с металлами. Образование и растворение гидроксида кальция при пропускании углекислого газа через известковую воду.

Ионообменные реакции, иллюстрирующие уравнения в учебниках.

Изменение электропроводности растворов при ионообменных реакциях.

Тема 8. Окислительно-восстановительные реакции

Степень окисления. Установление степени окисления по графической формуле и формуле состава. Соответствие оксидов и гидроксидов с точки зрения степени окисления.

Окислительно-восстановительная реакция. Окислитель, восстановитель. Электронное уравнение полуреакции.

Уравнивание окислительно-восстановительных реакций. Электронный баланс. Какие вещества бывают окислителями, а какие — восстановителями. Сильные и слабые окислители и восстановители. Тесты на окислители и восстановители.

Металлы как восстановители. Ряд активности металлов. Свойства металлов в зависимости от их положения в ряду активности. Составление уравнения реакций металлов с солями других металлов.

Электролиз. Катод, анод, электродные процессы. составление простейших уравнений реакции электролиза.

Пабораторные опыты. Окислительно-восстановительные реакции, иллюстрирующие уравнения в учебниках.

Практические работы. Определение окислителей и восстановителей. Сравнение активности металлов.

Демонстрации. Окислительно-восстановительные реакции, иллюстрирующие уравнения в учебниках.

Электролиз растворов различных солей.

Тема 9. Условия протекания химической реакции

Тепловой эффект химической реакции. Экзо- и эндо-термические реакции. Потенциальная энергия химических связей.

Что такое кинетика и скорость химической реакции. Задачи на определение скорости химической реакции. Быстрые и медленные реакции.

Зависимость скорости реакции от концентрации реагентов и температуры. Правило Вант-Гоффа. Особенности изменения скорости реакции в замкнутой системе и экзотермических реакций.

Катализаторы. Их роль в промышленности и жизни. Механизм катализа. Каталитический яд.

Лабораторные опыты. Тепловой эффект реакции нейтрализации. Тепловой эффект реакции взаимодействия тиосульфата натрия с соляной кислотой.

Определение знака теплового эффекта реакции (при наличии оборудования). Реакции, протекающие с разными скоростями.

Влияние концентрации и температуры на скорость реакции. Влияние тепла, выделяющегося при экзотермической реакции на ее скорость.

Каталитическое разложение пероксида водорода. Разложение пероксида водорода под действием дихромата калия. Ферментативное разложение пероксида водорода.

Демонстрации. Кинетическая кривая (при наличии оборудования).

Тема 10. Химия элементов. Металлы

Щелочные и щелочноземельные металлы. Изменение их физических свойств по группе. Их реакция с водой, горение, кислотно-основные свойства их гидроксидов. Восстановительные свойства, их изменение по группе. Магний- и кальций- термия. Поучение электролизом.

Амфотерность. Какие гидроксиды бывают амфотерными. Составление уравнений реакций амфотерных гидроксидов с кислотами и основаниями.

Алюминий, его восстановительные свойства. Алюмотермия. Амфотерные свойства гидроксида алюминия. Реакция алюминия с кислотами и основаниями. Получение алюминия.

Железо, характерные степени окисления. Окислительновосстановительные свойства и переходы между Fe^{2+} и Fe^{3+} . Кислотносновные свойства гидроксидов железа. Получение железа (доменный процесс).

Общие свойства металлов. Характерные степени окисления в зависимости от их положения в периодической таблице, кислотно-основной характер соответствующих гидроксидов. Нахождение металлов в природе и общие способы их получения в зависимости от нахождения в периодической таблице.

Коррозия и защита от неё (на усмотрение учителя). Какие металлы подвержены коррозии. Химические процессы при коррозии. Условия, способствующие коррозии. Способы защиты от коррозии: пассивные, активные, оксидирование, электрохимические, замена материала, конструкторские.

Лабораторные опыты. Амфотерные свойства гидроксида алюминия.

Знакомство с коллекцией сплавов алюминия. Реакция алюминия с кислотой. Реакция алюминия со щелочью. Реакция алюминия с хлоридом меди (II).

Реакция железа с соляной кислотой. 38.2. Реакция сульфата железа (II) сј щелочью.

Практические работы. Выявление амфотерных гидроксидов.

Демонстрации. Реакция щелочных и щелочноземельных металлов с водой. Горение натрия в хлоре (на усмотрение учителя)

Получение чистого $Fe(OH)_2$. Окисление Fe^{2+} и восстановление Fe^{3+} в растворе Образцы металлов. Железоалюминиевый термит. Электролиз раствора сульфата

меди

Образцы корродировавших изделий. Коррозия железного анода.

Тема 11. Химия элементов. Неметаллы

Галогены как элементы, их характерные валентности и степени окисления. Окислительные свойства галогенов в высших степенях окисления. Галогены в природе.

Галогениды и галогеноводороды. Изменение физических свойств и восстановительной способности галогеноводородов по группе. Растворимость галогенидов. Реакция фтороводорода со стеклом.

Галогены как простые вещества. Изменение физических и окислительных свойств по группе. Диспропорционирование галогенов, их реакции с металлами, вытеснение друг друга из галогенидов. Получение галогенов в лаборатории и промышленности.

Сера как элемент, её характерные валентности и степени окисления. Горение серы, ее диспропорционирование в щелочи, реакция с металлами. Кислотные свойства сероводорода, растворимость сульфидов в воде. Кислотные и восстановительные свойства SO_2 .

Серная кислота как кислота, окислитель по сере и водоотнимающее средство. Пассивация.

Азот как элемент, его характерные валентности и степени окисления. Оксид азота (II) и (IV). Азотистая кислота, ее разложение. Азотная кислота, ее реакция с металлами. Разложение нитратов. Промышленный синтез азотной кислоты.

Свойства аммиака в водном растворе. Донорно-акцепторная связь. Аммиак как основание.

Комплексные соединения. Центральный ион, лиганд, внешняя сфера. Координационное число. Составление простейших реакций комплексообразования.

Фосфор как элемент, его характерные валентности и степени окисления. Белый и красный фосфор. Горение фосфора, фосфорная кислота. Водоотнимающие свойства оксида фосфора. Полифосфорные кислоты, их гидратация. Роль их производных в живых организмах. Получение суперфосфата и фосфорной кислоты.

Углерод как элемент, его характерные валентности и степени окисления. Аллотропия углерода. Применение угля в промышленности. Горение угля, синтезгаз. Угарный газ. Кислотные свойства углекислого газа, угольная кислота, карбонаты. Карбонат натрия, его применение в промышленности.

Кремний как элемент, его характерные валентности и степени окисления. Кислотноосновные свойства оксида кремния. Его применение. Силикаты. Получение и применение чистого кремния.

Лабораторные опыты. Запах аммиака (нашатырного спирта). Основные свойства аммиака. Вытеснение аммиаком более слабых оснований из их солей. Вытеснение аммиака более сильными основаниями из солей аммония.

Образование комплексного соединения. Образование комплексного соединения с отрицательной комплексной частицей. Образование нейтрального комплексного соединения.

Практические работы. Свойства галогенидов. Свойства галогенов.

Свойства соединений серы (-2) и (+4).

Углекислый газ и карбонаты.

Демонстрации. Реакция йода со щелочью. Разложение хлората калия.

Дым над соляной кислотой. Реакции галогенидов с концентрированной серной кислотой. Реакция фтороводорода со стеклом. Хлороводородный фонтан (по возможности).

Жидкий бром, твердый йод. Нагревание иода. Получение хлора, горение меди или железа в нем. Реакция алюминия с бромом и йодом.

Плавление серы. Сплавление серы со щелочью. Горение серы. Реакция серы с железом или алюминием.

Реакция серной кислоты с ацетатом натрия. Взаимодействие концентрированной и разбавленной серной кислоты с цинком. Реакция серной кислоты с медью. Реакция серной кислоты с сахаром. Реакция серной кислоты с перманганатом калия.

Аммиак и его каталитическое окисление на оксиде хрома (III). Получение NO и его превращение в NO_2 . Реакция нитрита с серной кислотой. Тлеющая лучина и NO_2 . Реакции металлов с азотной кислотой. Разложение нитрата натрия и свинца. Реакция нитрата натрия с углем.

Горение фосфора, реакция P_2O_5 с водой, реакция $AgNO_3$ с фосфатом и растворение

фосфата серебра; получение и свечение белого фосфора, реакция фосфора с магнием и получение фосфина (на усмотрение учителя)

Реакция угля с оксидом или сульфатом переходного металла при нагревании; по возможности — изучение «сухого льда». Получение и горение угарного газа.

Реакция магния с оксидом кремния и получение силана; реакция силиката натрия с кислотой; «неорганический сад».

Тема 12. Основы органической химии

Предмет органической химии. Органические соединения. Углеродный скелет. Теория строения органических соединений. Изомеры. Гомологи. Функциональные группы и углеводородные радикалы. Примеры функциональных групп.

Углеводороды. Предельные (алканы) и непредельные (алкены, алкины) углеводороды. Дорисовка водородов в углеродном скелете. Горение углеводородов. Гидрирование по кратным связям.

Природный газ и нефть — важнейшее органическое топливо. Фракции нефти. Октановое число. Нефтепереработка — зачем она нужна и как ее проводят.

Спирты и карбоновые кислоты. Сравнение их кислотных свойств. Реакция этерификации. Окисление спиртов до карбоновых кислот.

Полимеры. Регулярные, линейные, сетчатые полимеры. Пластмассы. Наиболее распространенные полимеры: полиэтилен, полистирол, поливинилхлорид, тефлон. Реакции полимеризации.

Практические работы. Распознавание полимерных материалов. **Демонстрации.** Изомеры с заметно различающимися свойствами. Коллекция углеводородов. Горение гексана и декана.

Коллекция нефтей и нефтепродуктов.

Сравнение свойств карбоновых кислот и спиртов (реакции с натрием, магнием, гидрокарбонатом натрия). Реакция этерификации.

Коллекция полимеров и полимерных материалов.

Тема 13. Химия жизни

Обмен веществ (метаболизм). Организм как биохимический реактор. Ферменты как вещества, ускоряющие и направляющие биохимические

процессы. Принцип комплементарности. Гормоны, сигнальные молекулы и пути их влияния.

Углеводы. Сахара, моно-, дии полисахариды. Гидролиз полисахаридов. Примеры полисахаридов: крахмал, целлюлоза, гликоген. Жиры как сложные эфиры. Гидролиз жиров. Фосфолипиды как материал клеточных мембран.

Аминокислоты. Белки, их функции в организме. Пептидная связь. Первичная, вторичная, третичная и четвертичная структура белка. Денатурация и гидролиз белков.

Нуклеиновые кислоты: ДНК и РНК. Химические основы генетики.

Пища с точки зрения химии. Потребность в белках, жирах и углеводах. Калорийность пищи. Витамины. Микроэлементы. Пищевые волокна. Способы консервации пищи.

Процессы при кулинарной обработке (на усмотрение учителя).

Агрохимия. Роль почвы и питательных веществ. Лимитирующие ресурсы для растений. Понятие удобрения. Кислотность почв. Физиологическая кислотность удобрений. Основные, предпосевные удобрения и подкормка. Различные виды азотных, фосфорных и калийных удобрений.

Понятие яда. Токсичность. Летальная доза. Механизмы действия ядов: нарушение формы белков, проницаемости мембран, связывание с отдельными группами белков, металлами в транспортных молекулах, блокирование передачи нервных импульсов. Белковые яды, их ферментативное и ферментоблокирующее действие. Аутоиммунный ответ (аллергия). Способы лечения отравлений: выведение яда, связывание или разрушение яда в организме, симптоматическое лечение.

Лекарственные средства. Случаи, когда необходимо употреблять лекарства. Побочные действия лекарств. Распознавание подделок медицинских препаратов. Правила испытания лекарств. Отдельные виды лекарственных препаратов, ограничения их использования.

Демонстрации. Свойства пищевых масел. Изготовление мыла. Карамелизация Сворачивание белка. Щелочной гидролиз белка. Запах жженого белка.

Термообработка пищи.

Виды почв и удобрений. Химические и физические свойства удобрений. Этикетки лекарственных препаратов и инструкции к ним.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

8 класс

№ п/п	Наименование темы	Количество часов	Количество контрольных работ
1	Химическая лаборатория	2	
2	Вещество и реакция. Основные понятия и	25	
	законы химии		
3	Классы веществ и взаимосвязи между	24	1
	ними		
4	Количественные соотношения в химии	10	1
5	Электронное строение атома и	9	
	Периодический закон		
	Итого	70	

9 класс

№ п/п	Наименование темы	Количество часов	Количество контрольных работ
1	Химическая связь и строение вещества	6	
2	Электролитическая диссоциация и	9	1
	ионообменные реакции		
3	Окислительно-восстановительные реакции	8	1
4	Условия протекания химической реакции	6	1
5	Химия элементов. Неметаллы	18	1
6	Химия элементов. Металлы	8	1
7	Основы органической химии	6	
8	Химия жизни	7	
	Итого	68	