Общеобразовательная автономная некоммерческая организация «Школа «ЛЕТОВО»

Рабочая программа элективного курса ОЛИМПИАДНЫЙ ФИЗИЧЕСКИЙ ПРАКТИКУМ

10-11 класс

Автор-составитель:

Колякина С.Н.,

заведующий кафедры естественных наук

Москва

Рассмотрена на заседании кафедры естественных наук, протокол № 1 от «26» августа 2019 г.

Элективный курс «Олимпиадный физический практикум» нацелен на учеников с высокой мотивацией к изучению физики и активно реализующих этот интерес при изучении предмета. Курс может быть изучен в объеме 34 часа (1 час в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- совершенствование полученных в основном курсе физики знаний и умений;
- формирование представлений о постановке, классификации, приёмах и методах решения школьных физических задач;
- развитие интереса к физике через решения практических задач, встречающихся в повседневной жизни;
- формирование профессиональных намерений для выбора профессии.
- расширить знания основных физических законов на примере решения задач повышенной трудности;
- раскрыть некоторые нестандартные приёмы из математического аппарата, применяемого для решения задач повышенной сложности;
- развить физическую интуицию и определённые техники решения задач по физике, в соответствии с возрастающими требованиями современного уровня процессов во всех областях жизнедеятельности человека.

Метапредметные результаты:

- умение самостоятельно ставить и формулировать для себя новые задачи в изучении физики;
- развивать мотивы и познавательные интересы в изучении физики;
- уметь самостоятельно планировать пути достижения целей, в том числе альтернативные;
- осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение осуществлять самоконтроль за своей деятельностью в процессе достижения результатов;
- умение оценивать правильность выполнения учебной задачи.

Предметные результаты:

- определять взаимосвязь между основополагающими научными понятиями, физикой и другими естественными науками;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений;

- решать практико-ориентированные качественные и расчетные физические задачи, повышенного уровня сложности;
- применять физические модели при решении физических задач, находить адекватную предложенной задаче физическую модель.
- использовать изученные нестандартные математические приёмы в процессе решения задач

СОДЕРЖАНИЕ

Магнитное трение. Изучение вязкого трения, действующую на шар, движущийся в вязкой среде. Затухающие колебания. Маятник Максвелла. Формула Эйлера. Поверхностное натяжение. Изучение лампы накаливания. ЧЯ с источником питания. Определение геометрических и оптических характеристик собирающей линзы. Определение оптической силы рассевающей линзы. Оптоволокно. Диффузия соли. Определение пористости крупы газовым методом. Определение отношения диаметров двух игл по отношению их гидродинамических сопротивлений. Ток в соляном растворе. Колебания линейки. Разрядка/зарядка конденсатора (u(t), t(R), t(C)). Баллистический гальванометр. ЧЯ звезда светодиод, конденсатор, резистор. Поглощение пленок. Определение анизотропии упругих свойств бумаги. Определение отношения диаметров двух игл методом отрыва пузырька воздуха в воде.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Тема	Часы
1.1	Магнитное трение	1
1.2	Изучение вязкого трения, действующую на шар, движущийся в вязкой среде	1
1.3	Защита результатов экспериментальных работ	1
2.1	Затухающие колебания	1
2.2	Маятник Максвелла	1
2.3	Защита результатов экспериментальных работ	1
3.1	Эйлер	1
3.2	Поверхностное натяжение	1
3.3	Защита результатов экспериментальных работ	1
4.1	Изучение лампы накаливания	1
4.2	ЧЯ с источником питания	1
4.3	Защита результатов экспериментальных работ	1
5.1	Определение геометрических и оптических характеристик собирающей линзы	1
5.2	Определение оптической силы рассевающей линзы.	1

	34 часа	
11.3	Защита результатов экспериментальных работ Итого	2
11.2	методом отрыва пузырька воздуха в воде.	1
11.0	Определение отношения диаметров двух игл	1
11.1	Определение анизотропии упругих свойств бумаги.	1
10.3	Защита результатов экспериментальных работ	1
10.2	Поглощение пленок	1
10.1	ЧЯ звезда светодиод, конденсатор, резистор	1
9.3	Защита результатов экспериментальных работ	1
9.2	Баллистический гальванометр	1
9.1	Разрядка/зарядка конденсатора (u(t), t®, t©)	1
8.3	Защита результатов экспериментальных работ	1
8.2	Колебания линейки	1
8.1	Ток в соляном растворе	1
7.3	Защита результатов экспериментальных работ	1
	сопротивлений	
7.2	отношению их гидродинамических	1
/.1	Определение пористости крупы газовым методом Определение отношения диаметров двух игл по	1
6.3 7.1	Защита результатов экспериментальных работ	1
6.2	Диффузия соли	1
6.1	Оптоволокно	1
5.3	Защита результатов экспериментальных работ	1